Full Text

Turn on search term navigation

Copyright © 2016 Yu-Quan Leng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Collision sensing including collision position, collision direction, and force size could make robots smoothly interact with environment, so that the robots can strongly adapt to the outside world. Skin sensor imitates principles of human skin using special material and physical structure to obtain collision information, but this method has some disadvantages, such as complex design, low sampling rate, and poor generality. In this paper, a new method using force/torque sensor to calculate collision position, collision direction, and force size is proposed. Detailed algorithm is elaborated based on physical principle and unified modeling method for basic geometric surface. Gravity compensation and dynamic compensation are also introduced for working manipulators/robots in gravity and dynamic environment. In addition, considering algorithm solvability and uniqueness, four constraints are proposed, which are force constraint, geometric constraint, normal vector constraint, and current mutation constraint. In order to solve conflict solution of algorithm in redundant constraints, compatibility solution analysis is proposed. Finally, a simulation experiment shows that the proposed method can achieve collision information efficiently and accurately.

Details

Title
Collision Sensing Using Force/Torque Sensor
Author
Yu-Quan, Leng; Zheng-Cang, Chen; Xu, He; Zhang, Yang; Zhang, Wei
Publication year
2016
Publication date
2016
Publisher
John Wiley & Sons, Inc.
ISSN
1687725X
e-ISSN
16877268
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1751964879
Copyright
Copyright © 2016 Yu-Quan Leng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.