It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
A novel nickel nanostrand-silicone composite material at an optimized 15 vol% filler concentration demonstrates a dramatic piezoresistive effect with a negative gauge factor (ratio of percent change in resistivity to strain). The composite volume resistivity decreases in excess of three orders of magnitude at a 60% strain. The piezoresistivity does decrease slightly as a function of cycles, but not significantly as a function of time. The material's resistivity is also temperature dependent, once again with a negative dependence.
The evidence indicates that nickel strands are physically separated by matrix material even at high volume fractions, and points to a charge transport mechanism that causes a large change in conductivity for a small relative change in the distance between filler particles. Combined with the temperature dependence data, this suggests that conduction in this composite material may be dominated by quantum tunneling effects. Based upon a statistical model of junction character distribution, a quantum tunneling percolation model is applied that accurately reflects the mechanical and thermal trends.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer