It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The dynamics of micro-/nanoelectromechanical systems (M/NEMS) curved beams have been thoroughly investigated in the literature, commonly for curved arch beams actuated with electrodes facing their concave surface. Except for few works on slacked carbon nanotubes, the literature lacks a deep understanding of the dynamics of slacked curved resonators, where the electrode is placed in front of the convex beam surface. This paper investigates the dynamics of slacked curved resonators as experiencing combined internal resonances. The curved slacked resonator is excited using an antisymmetric partial electrode while the electrostatic voltage load is driven to elevated excitations, which breaks the symmetry of the system and affects natural frequencies and corresponding mode shapes. The axial load is tuned to monitor the ratios between the natural frequencies of different vibration modes, which induces simultaneous 1:1 and 2:1 internal resonances between the first and second mode with the third. We observe the interaction of hardening and softening bending of the fundamental backbone curves triggering various patterns of the response scenario and the appearance of coexisting regions of irregular dynamics.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Loughborough University, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough, UK (GRID:grid.6571.5) (ISNI:0000 0004 1936 8542)
2 eCampus University, Faculty of Engineering, Novedrate, Italy (GRID:grid.449889.0) (ISNI:0000 0004 5945 6678)
3 Saudi Aramco, Consulting Services Department, Dhahran, Saudi Arabia (GRID:grid.454873.9) (ISNI:0000 0000 9113 8494)