It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Pose estimation is a significant strategy that has been actively researched in various fields. For example, the strategy has been adopted for motion capture in moviemaking, and character control in video games. It can also be applied to implement the user interfaces of mobile devices through human poses. Therefore, this paper compares and analyzes four popular pose estimation models, namely, OpenPose, PoseNet, MoveNet Lightning, and MoveNet Thunder, using pre-classified images. The results show that MoveNet Lightning was the fastest, and OpenPose was the slowest among the four models. But OpenPose was the only model capable of estimating the poses of multiple persons. The accuracies of OpenPose, PoseNet, MoveNet Lightning, and MoveNet Thunder were 86.2%, 97.6%, 75.1%, and 80.6%, respectively.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer