Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In order to provide an accurate and timely response to different types of the attacks, intrusion and anomaly detection systems collect and analyze a lot of data that may include personal and other sensitive data. These systems could be considered a source of privacy-aware risks. Application of the federated learning paradigm for training attack and anomaly detection models may significantly decrease such risks as the data generated locally are not transferred to any party, and training is performed mainly locally on data sources. Another benefit of the usage of federated learning for intrusion detection is its ability to support collaboration between entities that could not share their dataset for confidential or other reasons. While this approach is able to overcome the aforementioned challenges it is rather new and not well-researched. The challenges and research questions appear while using it to implement analytical systems. In this paper, the authors review existing solutions for intrusion and anomaly detection based on the federated learning, and study their advantages as well as open challenges still facing them. The paper analyzes the architecture of the proposed intrusion detection systems and the approaches used to model data partition across the clients. The paper ends with discussion and formulation of the open challenges.

Details

Title
Comparative Review of the Intrusion Detection Systems Based on Federated Learning: Advantages and Open Challenges
Author
Fedorchenko, Elena 1   VIAFID ORCID Logo  ; Novikova, Evgenia 1   VIAFID ORCID Logo  ; Shulepov, Anton 2 

 Saint Petersburg Institute for Informatics and Automation, Federal Research Center of the Russian Academy of Sciences, 199178 Saint Petersburg, Russia; [email protected] 
 Saint Petersburg Institute for Informatics and Automation, Federal Research Center of the Russian Academy of Sciences, 199178 Saint Petersburg, Russia; [email protected]; Faculty of Computer Science and Technology, Saint Petersburg Electrotechnical University “LETI”, 197376 Saint Petersburg, Russia 
First page
247
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19994893
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2693864257
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.