Full Text

Turn on search term navigation

© 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Curcumin, a bioactive from Curcuma longa, has been shown to possess anti-melanogenic activity previously; however, the effects of its hydrogenated metabolites (HMs)—Tetrahydrocurcumin (THC), Hexahydrocurcumin (HHC), and Octahydrocurcumin (OHC)—on melanogenesis have not been sufficiently explored. We have studied and compared three HMs (THC, HHC, and OHC) with the parent compound, curcumin (PC), on melanin synthesis in B16F10 mouse and MNT-1 human melanoma cells. Our results demonstrated that all the HMs were nontoxic over the concentration range 5–40 µM, while PC was nontoxic at 5 µM but induced toxicity at 20 and 40 µM in B16F10 cells. All three HMs enhanced melanin synthesis, while PC (5 µM) inhibited it. THC (40 µM) significantly stimulated melanin synthesis to a greater degree than HHC and OHC in both B16F10 and MNT-1 cells; the order of melanogenesis stimulation was THC = OHC > HHC in B16F10 mouse cells, while it was THC > HHC > OHC in MNT-1 cells. HMs stimulated melanogenesis by pathways not involving tyrosinase, as neither the intracellular tyrosinase activity nor the protein levels of tyrosinase were affected. In addition, mushroom tyrosinase activity, using L-Dihydroxyphenylalanine (L-DOPA) as the substrate, showed no direct effects of HMs. In summary, our results demonstrate that the HMs enhanced melanogenesis, which establishes that the hydrogenation of the heptadiene moiety of curcumin leads to a loss of its anti-melanogenic activity and instead results in the stimulation of melanogenesis. This stimulation is not further enhanced upon hydrogenation of the β-diketone, which was noted in MNT-1 cells, although the correlation to the number of keto groups differed in B16F10 cells where HHC was the weakest stimulator of melanogenesis. Collectively, THC with both keto groups intact is the best stimulator. Moreover, our results also validate that the electrophilicity of curcumin is necessary for its anti-melanogenic activity, as the non-electrophilic HMs did not inhibit melanogenesis. Furthermore, our results suggest that THC might hold promise as a stimulator of melanogenesis for treatment of hypopigmentation disorders and anti-graying therapies. Future studies to probe the molecular signaling mechanisms and test whether the pro-melanogenic activity of HMs is retained in primary human melanocytes are warranted.

Details

Title
Comparative Study of Curcumin and Its Hydrogenated Metabolites, Tetrahydrocurcumin, Hexahydrocurcumin, and Octahydrocurcumin, on Melanogenesis in B16F10 and MNT-1 Cells
First page
4
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20799284
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2476357385
Copyright
© 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.