It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Desirable thermal properties of nanofluid is the vital reason for using nanofluid. There is an exemplary development in various applications using nanofluid. Mathematical and experimental models were developed to predict the thermal properties of nanofluids, the models are tiresome and expensive and have discrepancies between them. Soft computing tools are most useful in prediction, classification and clustering the data with good accuracy and with less expensive. In this paper, comparative analysis of Multi Layer Perceptron (MLP) model and Support Vector Regression (SVR) model were done by using various evaluation criterions. The two models developed to predict the thermal conductivity ratio of CNT/H2O and the results were compared. The present modeling has been carried out using MATLAB 2017 b. In both the models, the experimental values and predicted values possess good accordance. Regression coefficient value (R2) for overall data is 0.99 and 0.98 for MLP and SVR models respectively. The Root Mean Square Error (RMSE) value is less in MLP model when compared with SVR model, RMSE values are 0.01578 and 0.01812 respectively. The prediction is best in MLP model but with limited experimental data set, it fails to address over fitting problem, whereas SVR model is ideal with limited data set, it overcomes over fitting problem and possess better generalization than MLP model.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer