Full Text

Turn on search term navigation

© 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

An alternative to experiments is the use of numerical model tests, where the performances of ships can be evaluated entirely by computer simulations. In this paper, the free surface viscous flow around a bare hull model is simulated with three Computational Fluid Dynamics (CFD) software packages (FINE Marine, ANSYS CFD and SHIPFLOW) and compared to the results obtained during the experimental tests. The bare hull model studied is the Duisburg Test Case (DTC), developed at the Institute of Ship Technology, Ocean Engineering and Transport Systems (ISMT) for benchmarking and validation of the numerical methods. Hull geometry and model test results of resistance, conducted in the experimental facility at SVA Postdam, Nietzschmann, in 2010, are publicly available. A comparative analysis of the numerical approach and experimental results is performed, related to the numerical simulation of the free surface viscous flow around a typical container ship. Further, a comparative analysis between the results provided by NUMECA, ANSYS and SHIPFLOW is performed. Regarding the solution obtained, a satisfactory agreement between the towing test results and the computation results can be noticed. The minimum mean error was obtained through the SHIPFLOW case, 2.011%, which proved the best solution for the case studied.

Details

Title
Comparison between Model Test and Three CFD Studies for a Benchmark Container Ship
First page
62
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20771312
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2477331005
Copyright
© 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.