Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Rainfall is an indispensable link in the atmospheric water cycle, which plays a critical role in forest hydrology. Quercus acutissima and Cunninghamia lanceolata are two fast-growing and economically important tree species in the middle and lower reaches of the Yangtze River. They are extensively applied in the restoration of vegetation, hydraulic engineering, and the development of artificial forests. The primary aims of this study were to describe and compare the changes in soil water content following rainfall events, while elucidating their relationships to environmental factors. From September 2012 to August 2013, we monitored the soil moisture at different depths every 30 min using commercially available soil moisture measuring devices. Hourly meteorological data were monitored over an open area at 200 m from the sample site, including photosynthetically active radiation (Par), air temperature (Ta), relative air humidity (RH), vapor pressure deficits (Vpd), rainfall, and wind speed. The results revealed that variations in the soil moisture content during summer (Cv = 0.231) and autumn (Cv = 0.0.170) were greater than during spring (Cv = 0.0.092) and winter (Cv = 0.0.055), with those in the deep soil moisture (Cv = 0.117) being smaller. The soil moisture content was significantly altered following the cessation of rainfall, where the initial and average moisture content, and the ACR of the soil increased with higher rainfall intensities. The ACR was positively correlated with Ta (γ = 0.16), RH (γ = 0.46) and rainfall (γ = 0.22), but negatively correlated with Par (γ = −0.29), Vpd (γ = −0.23), and wind speed (γ = −0.01). This study provides valuable information regarding the hydrological processes of artificial forests in the middle and lower reaches of the Yangtze River.

Details

Title
Comparison of Changes in Soil Moisture Content Following Rainfall in Different Subtropical Plantations of the Yangtze River Delta Region
Author
Liu, Xin 1 ; Tang, Yingzhou 1 ; Cheng, Xuefei 1 ; Jia, Zhaohui 1 ; Li, Chong 1 ; Ma, Shilin 1 ; Zhai, Lu 2 ; Zhang, Bo 2 ; Zhang, Jinchi 1 

 Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China; [email protected] (X.L.); [email protected] (Y.T.); [email protected] (X.C.); [email protected] (Z.J.); [email protected] (C.L.); [email protected] (S.M.) 
 Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK 74078, USA; [email protected] (L.Z.); [email protected] (B.Z.) 
First page
914
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
20734441
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2550323482
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.