Full Text

Turn on search term navigation

Copyright © 2009 Jianjun Feng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The interaction between the impeller and the diffuser is considered to have a strong influence on the unsteady flow in radial pumps. In this paper, the unsteady flow in a low specific speed radial diffuser pump has been simulated by the CFD code CFX-10. Both Particle Image Velocimetry (PIV) and Laser Doppler Velocimetry (LDV) measurements have been conducted to validate the CFD results. Both the phase-averaged velocity fields and the turbulence fields obtained from different methods are presented and compared, in order to enhance the understanding of the unsteady flow caused by the relative motion between the rotating impeller and the stationary diffuser. The comparison of the results shows that PIV and LDV give nearly the same phase-averaged velocity fields, but LDV predicts the turbulence much clearer and better than PIV. CFD underestimates the turbulence level in the whole region compared with PIV and LDV but gives the same trend.

Details

Title
Comparison of Periodic Flow Fields in a Radial Pump among CFD, PIV, and LDV Results
Author
Feng, Jianjun; F.-K. Benra; Dohmen, H J
Publication year
2009
Publication date
2009
Publisher
John Wiley & Sons, Inc.
ISSN
1023621X
e-ISSN
15423034
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
855999596
Copyright
Copyright © 2009 Jianjun Feng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.