Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A typhoon or hurricane is one of the most destructive high-impact weather events. In this study, the genesis and development processes of Typhoon Nangka (2015), which occurred over the Western Pacific in 2015, were investigated based on the comprehensive observation data from three satellites, i.e., the Himawari-8 satellite, the CloudSat satellite and the Global Precipitation Measurement mission satellite (GPM), focusing on the characteristics of typhoon structure, precipitation and cloud. The results (Results) show that during the developing stage of Typhoon Nangka, the cloud system was relatively complex and changed significantly, with large raindrops dominating the precipitation around the eyewall in the first quadrant, and the convection in the eyewall and outer rainband burst upward to 17 km. In addition, three features were obvious: stratiform precipitation was dominant in the inner rainband, both the precipitation type (stratiform or convective) and intensity were distributed unevenly in the outer rainband, and large water content was located in the warm layer of clouds. Moreover, the collision growth and breakup of water droplets tended to be stable. The precipitation in the typhoon eyewall, inner rainband and outer rainband was significantly different; stratiform precipitation mainly occurred in the inner rainband, while convective precipitation mainly appeared in the eyewall and outer rainband. The cloud system was distributed asymmetrically, and the upper-layer and lower-layer clouds were closely related, dominated by single-layer clouds. There were deep convective clouds in the eyewall, and cirrus clouds with the broadest range across the eyewall. The coverage range of cirrus clouds was close to the radius of the typhoon. There were stratocumulus, altostratus and cumulus in the low levels.

Details

Title
Comprehensive Analysis of Typhoon Nangka Based on the Satellite Data from the GPM, CloudSat and Himawari-8
Author
Ma, Xiaolin; Wang, Ju; Huang, Hong; Wang, Xuezhong  VIAFID ORCID Logo  ; Wang, Zhen; Hu, Banghui
First page
440
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734433
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791569081
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.