Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Residential coal combustion is a major source of air pollution in developing countries, including China. Indeed, precisely measuring the real-time emission of major air pollutants is often challenging and can hardly be repeated at a lab-scale. In this study, for the first time, two clean coals initiated from raw bituminous coal were burned for real-time estimation of air pollution characteristics and their thermal efficiencies in different stoves. Moreover, thermodynamic equilibrium simulations were investigated for slagging parameters using Factsage 7.1 at reaction temperature 800~1600 °C. Results revealed that the firepower of clean coals (Briquetted coal and Semi-coke) was much higher (2.2 kW and 2.1 kW) than raw coal (1.8 kW) in a traditional stove. However, the thermal efficiencies were remarkably increased (13.3% and 13.5%) in an improved stove for briquetted coal and semi-coke, respectively. The emission of major air pollutants including carbon monoxide (CO), sulfur dioxide (SO2), particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), non-methane hydrocarbons (NMHCs) from both coal and semi-coke was significantly reduced. Thermodynamic equilibrium calculations indicate that briquetted coal is not susceptible to slagging under the reaction conditions in the household stove. The current study provides guidance for the selection of alternative and efficient clean coal fuels in rural areas for household purposes coupled with public health and safety.

Details

Title
A Comprehensive Assessment of Clean Coal Fuels for Residential Use to Replace Bituminous Raw Coal
Author
Wang, Yi 1 ; Liang, Bin 2   VIAFID ORCID Logo  ; Li, Dong 1 ; Hua’an Zheng 1 ; Yuan, Lei 1 ; Teng, Haipeng 1 ; Adnan Raza Altaf 3   VIAFID ORCID Logo 

 School of Chemical Engineering, Northwest University, Xi’an 710069, China; Shaanxi Key Laboratory for Carbon Neutral Technology, Xi’an 710069, China 
 Shandong Energy Group Co., Ltd., Jinan 250014, China 
 School of Engineering, Huazhong Agricultural University, Wuhan 430070, China 
First page
1910
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779476531
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.