Full Text

Turn on search term navigation

© 2008 Ghatkesar et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Molecular interaction is a key concept in our understanding of the biological mechanisms of life. Two physical properties change when one molecular partner binds to another. Firstly, the masses combine and secondly, the structure of at least one binding partner is altered, mechanically transducing the binding into subsequent biological reactions. Here we present a nanomechanical micro-array technique for bio-medical research, which not only monitors the binding of effector molecules to their target but also the subsequent effect on a biological system in vitro. This label-free and real-time method directly and simultaneously tracks mass and nanomechanical changes at the sensor interface using micro-cantilever technology. To prove the concept we measured lipid vesicle (∼748*106 Da) adsorption on the sensor interface followed by subsequent binding of the bee venom peptide melittin (2840 Da) to the vesicles. The results show the high dynamic range of the instrument and that measuring the mass and structural changes simultaneously allow a comprehensive discussion of molecular interactions.

Details

Title
Comprehensive Characterization of Molecular Interactions Based on Nanomechanics
Author
Ghatkesar, Murali Krishna; Lang, Hans-Peter; Gerber, Christoph; Hegner, Martin; Braun, Thomas
First page
e3610
Section
Research Article
Publication year
2008
Publication date
Nov 2008
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1312328159
Copyright
© 2008 Ghatkesar et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.