Citation: Robinson R (2013) Confirming the Importance of the R-Spine: New Insights into Protein Kinase Regulation. PLoS Biol 11(10): e1001681. doi:10.1371/journal.pbio.1001681
Published: October 15, 2013
Copyright: © 2013 Richard Robinson. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Competing interests: The author has declared that no competing interests exist.
Phosphorylation is a ubiquitous means of changing a protein's behavior. Adding a phosphate group to a serine, threonine, or tyrosine amino acid alters the shape and charge of the protein, a change that may activate an enzyme, promote membrane translocation, or trigger binding to DNA. Protein kinases--enzymes that add phosphates to other proteins--are so important to eukaryotic cell function that they account for about 2% of all human genes, and act on almost a third of all human proteins. Aberrant protein kinase activity drives a myriad of diseases, and, not surprisingly, these protein kinases are central targets for a wide variety of medications, including drugs for cancer, heart disease, and diabetes.
Eukaryotic protein kinase regulation. Structural motifs in eukaryotic protein kinases adopt specific conformations indicative of whether the kinase is in an active or inactive state; knowledge of these conformations may aid in identifying specific kinase inhibitors.
The requirements of rational drug design, as well as pure human curiosity, have led researchers to try to understand the structural features of protein kinases that contribute to their regulation. In this issue of PLOS Biology, Hiruy Meharena, Alexandr Kornev, and colleagues demonstrate the central importance of one structural element common to all protein kinases, and identify key amino acids that contribute to the stability of the catalytic core.
The structural core of eukaryotic protein kinases is highly conserved, and consists of two lobes, called the N-terminal and C-terminal lobes (N-lobe and C-lobe). The cleft between them forms the active site. The core is further characterized by a functional element called the catalytic spine (C-spine) formed from several structurally distinct parts of the two lobes. The unusual characteristic of the C-spine is that the adenine ring of ATP (the source of phosphate) is a part of the hydrophobic stack formed by the amino acid side chains.
In work predating the discovery of the C-spine, the authors suggested that several other noncontiguous sections of the two lobes created a separate motif, parallel to the C-spine, that was also essential for catalysis, which they termed the regulatory spine (R-spine). Unlike the C-spine, the R-spine is highly regulated, which typically involves phosphorylation of a portion of the R-spine called the activation loop. Here, they rigorously tested the importance of the R-spine by systematically mutating multiple key residues within it to determine the effect on catalytic activity, using as a model cyclic AMP-dependent protein kinase.
The researchers began by aligning sequences of more than 13,000 eukaryotic protein kinases, to determine which amino acid residues of the R-spine were conserved. They focused on four in particular, termed RS1, RS2, RS3, and RS4. RS1 was an aromatic amino acid, either histidine or tyrosine in virtually all protein kinases, while RS2 was typically also an aromatic residue, usually phenylalanine. RS3 and RS4 were almost always hydrophobic. When the normal amino acids at RS1 or RS2 were replaced with hydrophilic amino acids, catalytic activity was abolished. Switching RS3 or RS4 to hydrophilic amino acids had much less of an effect. They saw the same pattern of high sensitivity of RS1 and RS2, low sensitivity of RS3 and RS4, when testing the importance of the specific hydrophobic side chain atoms. Replacing the normal, more elaborate side chains with smaller hydrophobic groups drastically reduced catalytic activity in the first pair, but not the second pair.
The reason for that difference in response, they suspected, lay in the local environment. RS1 and RS2 are part of the C-lobe, while RS3 and RS4 are part of the N-lobe. Of 14 amino acids nearby RS3 and RS4, only three are highly conserved, all of them hydrophobic. Because they seemed to be supporting the N-lobe region of the R-spine, the authors dubbed these three the Shell (Sh). They found, for instance, that mutation of RS3 to alanine had little effect unless Sh2 was also changed, from methionine to glycine. Replacement of the bulky methionine side chain with the small methyl side chain of alanine almost completely eliminated catalytic activity.
Finally, the authors examined 172 publicly available structures of protein kinases, and found four different conformations in which the R-spine was disassembled, corresponding to inactive states of the respective enzymes, strengthening the evidence that the R-spine is central for catalytic activity, and broadening the understanding of protein kinase activity regulation.
These results will likely have large and almost immediate practical implications. There are currently two dozen protein kinase inhibitors approved for clinical use, and many more in various stages of development. The confirmation that the R-spine is critical for catalytic activity, and the identification of the most sensitive residues within it, is likely to expand the array of targets for the development of new inhibitors. In addition, mutations in these same kinases are responsible for multiple human diseases, and better understanding of the pathogenic consequences of those mutations may lead to a more rational approach to therapies designed to restore the function of the mutant proteins.
Meharena HS, Chang P, Keshwani MM, Oruganty K, Nene AK, et al. (2013) Deciphering the Structural Basis of Eukaryotic Protein Kinase Regulation. doi:10.1371/journal.pbio.1001680
Eyre-Walker A, Stoletzki N (2013) The Assessment of Science: The Relative Merits of Post-publication Review, the Impact Factor, and the Number of Citations. PLOS Biol 11 (10) e1001675 doi: 10.1371/journal.pbio.1001675
Allen L, Jones C, Dolby K, Lynn D, Walport M (2009) Looking for Landmarks: The Role of Expert Review and Bibliometric Analysis in Evaluating Scientific Publication Outputs. PLoS ONE 4: e5910 Available: http://dx.plos.org/10.1371/journal.pone.0005910. Accessed 26 December 2011. doi: 10.1371/journal.pone.0005910
Hochberg M (2012) Good Science Depends on Good Peer-Review. Perspectives in Publishing (Blog) Available: https://sites.google.com/site/perspectivesinpublishing/our-mission. Accessed 22 August 2013
Corbyn Z (18 June 2009) Hefce backs off citations in favour of peer review in REF. The Times Higher Education Available: http://www.timeshighereducation.co.uk/news/hefce-backs-off-citations-in-favour-of-peer-review-in-ref/407041.article. Accessed 22 August 2013
US National Institutes of Health (page last updated on August 15, 2013) Peer Review Process. Available: http://grants.nih.gov/grants/peer_review_process.htm. Accessed 22 August 2013
Smith R (2006) Peer review: a flawed process at the heart of science and journals. J R Soc Med 99: 178-182 Available: http://jrs.sagepub.com/content/99/4/178.full. Accessed 6 July 2009. doi: 10.1258/jrsm.99.4.178
The PLOS Medicine Editors (2006) The Impact Factor Game. PLoS Med 3: e291 doi: 10.1371/journal.pmed.0030291
Rossner M, Epps HV, Hill E (2007) Show me the data. J Cell Biol 179: 1091-1092 Available: http://jcb.rupress.org/content/179/6/1091. Accessed 8 August 2013. doi: 10.1083/jcb.200711140
Rossner M, Van Epps H, Hill E (2008) Irreproducible Results--A Response to Thomson Scientific. J Gen Physiol 131: 183-184 Available: http://jcb.rupress.org/content/179/6/1091. Accessed 8 August 2013. doi: 10.1085/jgp.200809957
Brembs B, Button K, Munafò M (2013) Deep impact: unintended consequences of journal rank. Front Hum Neurosci 7: 291 Available: http://www.frontiersin.org/Human_Neuroscience/10.3389/fnhum.2013.00291/full. Accessed 26 June 2013. doi: 10.3389/fnhum.2013.00291
Dryad (n.d.) Digital Data Repository. Available: http://datadryad.org/. Accessed 8 August 2013
Allen L (2013) Providing context to Article-Level Metrics. PLOS Blog Available: http://blogs.plos.org/plos/2013/05/providing-context-to-article-level-metrics/. Accessed 8 May 2013
Neylon C, Wu S (2009) Article-Level Metrics and the Evolution of Scientific Impact. PLoS Biol 7: e1000242 Available: http://dx.doi.org/10.1371/journal.pbio.1000242. Accessed 19 November 2011. doi: 10.1371/journal.pbio.1000242
Lin J, Fenner M (2013) Altmetrics in Evolution: Defining and Redefining the Ontology of Article-Level Metrics. Information Standards Quarterly 25: 20-26 Available: http://www.niso.org/publications/isq/2013/v25no2/lin/. Accessed 15 August 2013. doi: 10.3789/isqv25no2.2013.04
ImpactStory (n.d.) Share the full story of your research impact. Available: http://impactstory.org/. Accessed 23 August 2013
Kwok R (2013) Research impact: Altmetrics make their mark. Nature 500: 491-493 Available: http://www.nature.com/naturejobs/science/articles/10.1038/nj7463-491a. Accessed 22 August 2013. doi: 10.1038/nj7463-491a
San Francisco Declaration on Research Assessment (DORA) (n.d.). Available: http://am.ascb.org/dora/. Accessed 26 June 2013
Altmetric (n.d.) Company website. Available: http://www.altmetric.com/. Accessed 26 June 2013
Galligan F, Dyas-Correia S (2013) Altmetrics: Rethinking the Way We Measure. Ser Rev 39: 56-61 Available: http://linkinghub.elsevier.com/retrieve/pii/S009879131300004X. Accessed 15 August 2013. doi: 10.1016/j.serrev.2013.01.003
Piwowar H (2013) Altmetrics: Value all research products. Nature 493: 159-159 Available: http://www.nature.com/nature/journal/v493/n7431/full/493159a.html?WT.ec_id=NATURE-20130110. Accessed 10 January 2013
Thelwall M, Haustein S, Larivière V, Sugimoto CR (2013) Do Altmetrics Work? Twitter and Ten Other Social Web Services. PLoS ONE 8: e64841 Available: http://dx.plos.org/10.1371/journal.pone.0064841. Accessed 15 August 2013. doi: 10.1371/journal.pone.0064841
Taylor M (2013) Exploring the Boundaries: How Altmetrics Can Expand Our Vision of Scholarly Communication and Social Impact. Information Standards Quarterly 25: 27-32 Available: http://www.niso.org/publications/isq/2013/v25no2/taylor/. Accessed 15 August 2013. doi: 10.3789/isqv25no2.2013.05
Roemer RC, Borchardt R (2013) Institutional Altmetrics and Academic Libraries. Information Standards Quarterly 25: 14-19 Available: http://www.niso.org/publications/isq/2013/v25no2/roemer/. Accessed 15 August 2013. doi: 10.3789/isqv25no2.2013.03
Konkiel S, Scherer D (2013) New opportunities for repositories in the age of altmetrics. Bull Am Soc Inf Sci Technol 39: 22-26 Available: http://doi.wiley.com/10.1002/bult.2013.1720390408. Accessed 15 August 2013. doi: 10.1002/bult.2013.1720390408
Priem J (2013) Scholarship: Beyond the paper. Nature 495: 437-440 Available: http://www.nature.com/nature/journal/v495/n7442/full/495437a.html. Accessed 21 August 2013. doi: 10.1038/495437a
Faculty of 1000 (n.d) F1000Prime. Available: http://f1000.com/prime. Accessed 8 August 2013
Google Scholar (n.d.). Available: http://scholar.google.com. Accessed 9 August 2013
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
© 2013 Richard Robinson. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Robinson R (2013) Confirming the Importance of the R-Spine: New Insights into Protein Kinase Regulation. PLoS Biol 11(10): e1001681. doi:10.1371/journal.pbio.1001681
Abstract
Of 14 amino acids nearby RS3 and RS4, only three are highly conserved, all of them hydrophobic. Because they seemed to be supporting the N-lobe region of the R-spine, the authors dubbed these three the Shell (Sh). [...]the authors examined 172 publicly available structures of protein kinases, and found four different conformations in which the R-spine was disassembled, corresponding to inactive states of the respective enzymes, strengthening the evidence that the R-spine is central for catalytic activity, and broadening the understanding of protein kinase activity regulation.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer