It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
When solving constrained multi-objective optimization problems (CMOPs), multiple conflicting objectives and multiple constraints need to be considered simultaneously, which are challenging to handle. Although some recent constrained multi-objective evolutionary algorithms (CMOEAs) have been developed to solve CMOPs and have worked well on most CMOPs. However, for CMOPs with small feasible regions and complex constraints, the performance of most algorithms needs to be further improved, especially when the feasible region is composed of multiple disjoint parts or the search space is narrow. To address this issue, an efficient global diversity CMOEA (EGDCMO) is proposed in this paper to solve CMOPs, where a certain number of infeasible solutions with well-distributed feature are maintained in the evolutionary process. To this end, a set of weight vectors are used to specify several subregions in the objective space, and infeasible solutions are selected from each subregion. Furthermore, a new fitness function is used in this proposed algorithm to evaluate infeasible solutions, which can balance the importance of constraints and objectives. In addition, the infeasible solutions are ranked higher than the feasible solutions to focus on the search in the undeveloped areas for better diversity. After the comparison tests on three benchmark cases and an actual engineering application, EGDCMO has more impressive performance compared with other constrained evolutionary multi-objective algorithms.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Northwestern Polytechnical University, School of Marine Science and Technology, Xi’an, China (GRID:grid.440588.5) (ISNI:0000 0001 0307 1240)