Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

China’s steel industry’s carbon emissions accounted for more than 60% of global carbon emissions, approximately 15% in China in 2020. China’s steel industry accounted for approximately 16% of China’s total carbon emissions in 2021. The ability to reduce the carbon dioxide emissions generated by the steel industry and protect the living environment for humans and nature has become a realistic issue for China. This paper constructs a steel consumption–carbon emission system. Research shows that by adjusting the GDP growth rate and CO2 emissions per unit of steel production, the carbon peak in the steel industry will advance to 2030 and the carbon emissions after the peak will be significantly reduced. The reduction in steel consumption in the construction and machinery sectors does not have a significant impact on carbon emissions from the steel industry, whereas the reduction in steel consumption in the transportation and infrastructure sectors has contributed to carbon reduction activities in the steel industry. When all four sectors are regulated simultaneously, it is found that the predicted carbon peaking time for the steel sector advances to 2029, fulfilling the goal of achieving carbon peaking by 2030. Carbon emissions should decrease after that point.

Details

Title
Consumption-Driven Carbon Emission Reduction Path and Simulation Research in Steel Industry: A Case Study of China
Author
Xu, Desheng 1 ; Liu, Encui 1 ; Duan, Wei 1 ; Yang, Ke 1 

 School of Economics and Management, Inner Mongolia University of Technology, Hohhot 010051, China; Inner Mongolia Management Modernization Research Center, Hohhot 010051, China 
First page
13693
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2728528408
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.