Full Text

Turn on search term navigation

© 2018. This work is published under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Given the importance of blood pressure (BP) as a direct indicator of hypertension, regular monitoring is encouraged for healthy people and mandatory for patients at risk from cardiovascular diseases. We propose a system in which photoplethysmogram (PPG) is used to continuously estimate BP. A PPG sensor can be easily embedded in a modern wearable device, which can be used in such an approach. The PPG signal is hrst preprocessed in order to remove major noise and movement artefacts present in the signal. A set of features describing the PPG signal on a per-cycle basis is then computed to be used in regression models. The predictive performance of the models is improved by hrst using the RReliefF algorithm to select a subset of relevant features. Afterwards, personalization of the models is considered to further improve the performance. The approach is validated using two distinct datasets, one from a hospital environment and the other collected during every-day activities. Using the MIMIC hospital dataset, the best achieved mean absolute errors (MAE) in a leave-one-subject-out (LOSO) experiment were 4.47 mmHg for systolic and 2.02 mmHg for diastolic BP, at maximum personalization. For everyday-life dataset, the lowest errors in the same LOSO experiment were 8.57 mmHg for systolic and 4.42 mmHg for diastolic BP, again using maximum personalization. The best performing algorithm was an ensemble of regression trees.

Alternate abstract:

Krvni tlak je neposreden pokazatelj hipertenzije. Razvili smo sistem, ki krvni tlak ocenjuje iz fotopletizmograma (PPG), kakrsen je če vgrajen v vecino modernih senzorskih zapestnic. Signal PPG smo sprva predprocesirali in segmentirali na cikle. Predprocesiranje odpravi vecino šuma, ki se pogosto pojavlja zaradi gibanja. Iz očiščenega signala smo nato izračunali mnozico znašilk, ki smo jih uporabili v regresijskih modelih. Sistem smo izboljsali z uporabo algoritma RReliefF za izbor relevantnih znašilk in z uporabo dela podatkov vsake osebe za učenje personaliziranih napovednih modelov. Sistem smo vrednotili na dveh podatkovnih mnočicah, eni izklinicnega okolja in drugi zbrani med rutinskimi dnevnimi aktivnostmi posameznikov. V poizkusu smo model vsakic naučili na vseh osebah razen eni in ga nato testirali na izpusceni osebi. Z uporabo klinicne podatkovne mnozice smo v omenjenem poizkusu dosegli najnizčji povprecčni absolutni napaki (MAE) 4.47 mmHg za sistolicčni in 2.02 mmHg za diastolicčni krvni tlak, pri najvecji stopnji personalizacije. Za mnozico, zbrano med dnevnimi aktivnostmi, smo dosegli najnizji napaki 8.57 mmHg za sistolični in 4.42 mmHg za diastolicni krvni tlak, ponovno pri najvecji stopnji personalizacije. Najbolje seje obnesel ansambel regresijskih dreves.

Details

Title
Continuous Blood Pressure Estimation from PPG Signal
Author
Slapničar, Gašper 1 ; Luštrek, Mitja 1 ; Marinko, Matej 2 

 Joef Stefan Institute, Jamova cesta 39, 1000 Ljubljana 
 Faculty of Mathematics and Physics, Jadranska cesta 19, 1000 Ljubljana 
Pages
33-42
Publication year
2018
Publication date
Mar 2018
Publisher
Slovenian Society Informatika / Slovensko drustvo Informatika
ISSN
03505596
e-ISSN
18543871
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2133769282
Copyright
© 2018. This work is published under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.