Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

As a new type of vision sensor, the dynamic and active-pixel vision sensor (DAVIS) outputs image intensity and asynchronous event streams in the same pixel array. We present a novel visual odometry algorithm based on the DAVIS in this paper. The Harris detector and the Canny detector are utilized to extract an initialized tracking template from the image sequence. The spatio-temporal window is selected by determining the life cycle of the asynchronous event streams. The alignment on timestamps is achieved by tracking the motion relationship between the template and events within the window. A contrast maximization algorithm is adopted for the estimation of the optical flow. The IMU data are used to calibrate the position of the templates during the update process that is exploited to estimate camera trajectories via the ICP algorithm. In the end, the proposed visual odometry algorithm is evaluated in several public object tracking scenarios and compared with several other algorithms. The tracking results show that our visual odometry algorithm can achieve better accuracy and lower latency tracking trajectory than other methods.

Details

Title
Contrast Maximization-Based Feature Tracking for Visual Odometry with an Event Camera
Author
Gao, Xiang; Xue, Hanjun; Liu, Xinghua  VIAFID ORCID Logo 
First page
2081
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
22279717
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2728515746
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.