Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

With the development of the customization concept, small-batch and multi-variety production will become one of the major production modes, especially for fast-moving consumer goods. However, this production mode has two issues: high production cost and the long manufacturing period. To address these issues, this study proposes a multi-objective optimization model for the flexible flow-shop to optimize the production scheduling, which would maximize the production efficiency by minimizing the production cost and makespan. The model is designed based on hybrid algorithms, which combine a fast non-dominated genetic algorithm (NSGA-II) and a variable neighborhood search algorithm (VNS). In this model, NSGA-II is the major algorithm to calculate the optimal solutions. VNS is to improve the quality of the solution obtained by NSGA-II. The model is verified by an example of a real-world typical FFS, a tissue papermaking mill. The results show that the scheduling model can reduce production costs by 4.2% and makespan by 6.8% compared with manual scheduling. The hybrid VNS-NSGA-II model also shows better performance than NSGA-II, both in production cost and makespan. Hybrid algorithms are a good solution for multi-objective optimization issues in flexible flow-shop production scheduling.

Details

Title
Cost Optimal Production-Scheduling Model Based on VNS-NSGA-II Hybrid Algorithm—Study on Tissue Paper Mill
Author
Zhang, Huanhuan 1   VIAFID ORCID Logo  ; Li, Jigeng 1 ; Hong, Mengna 2 ; Man, Yi 1   VIAFID ORCID Logo  ; He, Zhenglei 1   VIAFID ORCID Logo 

 School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China 
 School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; China Singapore International Joint Research Institute, Guangzhou 510006, China 
First page
2072
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
22279717
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2728524232
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.