It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Introduction
Various statistical approaches can be used to deal with unmeasured confounding when estimating treatment effects in observational studies, each with its own pros and cons. This study aimed to compare treatment effects as estimated by different statistical approaches for two interventions in observational stroke care data.
Patients and methods
We used prospectively collected data from the MR CLEAN registry including all patients (n = 3279) with ischemic stroke who underwent endovascular treatment (EVT) from 2014 to 2017 in 17 Dutch hospitals. Treatment effects of two interventions – i.e., receiving an intravenous thrombolytic (IVT) and undergoing general anesthesia (GA) before EVT – on good functional outcome (modified Rankin Scale ≤2) were estimated. We used three statistical regression-based approaches that vary in assumptions regarding the source of unmeasured confounding: individual-level (two subtypes), ecological, and instrumental variable analyses. In the latter, the preference for using the interventions in each hospital was used as an instrument.
Results
Use of IVT (range 66–87%) and GA (range 0–93%) varied substantially between hospitals. For IVT, the individual-level (OR ~ 1.33) resulted in significant positive effect estimates whereas in instrumental variable analysis no significant treatment effect was found (OR 1.11; 95% CI 0.58–1.56). The ecological analysis indicated no statistically significant different likelihood (β = − 0.002%; P = 0.99) of good functional outcome at hospitals using IVT 1% more frequently. For GA, we found non-significant opposite directions of points estimates the treatment effect in the individual-level (ORs ~ 0.60) versus the instrumental variable approach (OR = 1.04). The ecological analysis also resulted in a non-significant negative association (0.03% lower probability).
Discussion and conclusion
Both magnitude and direction of the estimated treatment effects for both interventions depend strongly on the statistical approach and thus on the source of (unmeasured) confounding. These issues should be understood concerning the specific characteristics of data, before applying an approach and interpreting the results. Instrumental variable analysis might be considered when unobserved confounding and practice variation is expected in observational multicenter studies.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer