Content area

Abstract

CRISPR-Cas9 technology provides a powerful system for genome engineering. However, variable activity across different single guide RNAs (sgRNAs) remains a significant limitation. We analyzed the molecular features that influence sgRNA stability, activity and loading into Cas9 in vivo. We observed that guanine enrichment and adenine depletion increased sgRNA stability and activity, whereas differential sgRNA loading, nucleosome positioning and Cas9 off-target binding were not major determinants. We also identified sgRNAs truncated by one or two nucleotides and containing 5[variant prime] mismatches as efficient alternatives to canonical sgRNAs. On the basis of these results, we created a predictive sgRNA-scoring algorithm, CRISPRscan, that effectively captures the sequence features affecting the activity of CRISPR-Cas9 in vivo. Finally, we show that targeting Cas9 to the germ line using a Cas9-nanos 3[variant prime] UTR led to the generation of maternal-zygotic mutants, as well as increased viability and decreased somatic mutations. These results identify determinants that influence Cas9 activity and provide a framework for the design of highly efficient sgRNAs for genome targeting in vivo

Details

Title
CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo
Author
Moreno-mateos, Miguel A; Vejnar, Charles E; Beaudoin, Jean-denis; Fernandez, Juan P; Mis, Emily K; Khokha, Mustafa K; Giraldez, Antonio J
Pages
982-988
Publication year
2015
Publication date
Oct 2015
Publisher
Nature Publishing Group
ISSN
15487091
e-ISSN
15487105
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1767144784
Copyright
Copyright Nature Publishing Group Oct 2015