Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Virtual currencies have been declared as one of the financial assets that are widely recognized as exchange currencies. The cryptocurrency trades caught the attention of investors as cryptocurrencies can be considered as highly profitable investments. To optimize the profit of the cryptocurrency investments, accurate price prediction is essential. In view of the fact that the price prediction is a time series task, a hybrid deep learning model is proposed to predict the future price of the cryptocurrency. The hybrid model integrates a 1-dimensional convolutional neural network and stacked gated recurrent unit (1DCNN-GRU). Given the cryptocurrency price data over the time, the 1-dimensional convolutional neural network encodes the data into a high-level discriminative representation. Subsequently, the stacked gated recurrent unit captures the long-range dependencies of the representation. The proposed hybrid model was evaluated on three different cryptocurrency datasets, namely Bitcoin, Ethereum, and Ripple. Experimental results demonstrated that the proposed 1DCNN-GRU model outperformed the existing methods with the lowest RMSE values of 43.933 on the Bitcoin dataset, 3.511 on the Ethereum dataset, and 0.00128 on the Ripple dataset.

Details

Title
Cryptocurrency Price Prediction with Convolutional Neural Network and Stacked Gated Recurrent Unit
Author
Kang, Chuen Yik; Chin Poo Lee  VIAFID ORCID Logo  ; Lim, Kian Ming  VIAFID ORCID Logo 
First page
149
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
23065729
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2734610277
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.