Full Text

Turn on search term navigation

© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

New structure determinations of CuCl2∙2H2O and NiCl2∙6H2O are reported from 100 K X-ray diffraction experiments using both Mo Kα and Cu Kα radiation. Combined density functional theory (ORCA) and non-spherical atomic scattering factor (NoSpherA2) computations enabled Hirshfeld atom refinements (HAR) using custom atom scattering factors based on accurately polarized atom electron densities. The water hydrogen atoms could be positionally refined resulting in distinctly longer O–H bond lengths than those reported from previous X-ray diffraction experiments, but in good agreement with legacy neutron diffraction studies. Anisotropic displacement factors were employed, for the first time in these compounds by any technique. The outcomes from using the different X-ray sources with this new HAR method are compared, and the precision of the H-atom refinements evaluated where possible.

Details

Title
Crystal Structures of CuCl2·2H2O (Eriochalcite) and NiCl2∙6H2O (Nickelbischofite) at Low Temperature: Full Refinement of Hydrogen Atoms Using Non-Spherical Atomic Scattering Factors
Author
Boeré, René T 1   VIAFID ORCID Logo 

 Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; [email protected]; Tel.: +1-4033292045; Canadian Centre for Research in Applied Fluorine Technologies, 4401 University Drive W., Lethbridge, AB T1K 3M4, Canada 
First page
293
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734352
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2779466369
Copyright
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.