Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Medium-range streamflow forecasts largely depend on the accuracy of meteorological forecasts. Due to large errors in precipitation forecasts, most streamflow forecasts based on deep learning rely only on historical data. Here, we apply a cascade Long Short-Term Memory (LSTM) model to forecast daily streamflow over 49 watersheds in the Yangtze River basin for up to 15 days. The first layer of the cascade LSTM model uses atmospheric circulation factors to predict future precipitation, and the second layer uses forecast precipitation to predict streamflow. The results show that the default LSTM model provides skillful streamflow forecasts over most watersheds. At the lead times of 1, 7, and 15 days, the streamflow Kling–Gupta efficiency (KGE) of 78%, 30%, and 20% watersheds are greater than 0.5, respectively. Its performance improves with the increase in drainage area. After implementing the cascade LSTM model, 61–88% of the watersheds show increased KGE at different leads, and the increase is more obvious at longer leads. Using cascade LSTM with perfect future precipitation shows further improvement, especially over small watersheds. In general, cascade LSTM modeling is a good attempt for streamflow forecasts over the Yangtze River, and it has a potential to connect with dynamical meteorological forecasts.

Details

Title
Daily Streamflow Forecasts Based on Cascade Long Short-Term Memory (LSTM) Model over the Yangtze River Basin
Author
Li, Jiayuan 1 ; Yuan, Xing 1   VIAFID ORCID Logo 

 Key Laboratory of Hydrometeorological Disaster Mechanism and Warning of Ministry of Water Resources, Nanjing University of Information Science and Technology, Nanjing 210044, China; School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing 210044, China 
First page
1019
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734441
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2791750962
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.