Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Buildings consume about 40% of the global energy. Building energy consumption is affected by multiple factors, including building physical properties, performance of the mechanical system, and occupants’ activities. The prediction of building energy consumption is very complicated in actual practice. Accurate and fast prediction of the building energy consumption is very important in building design optimization and sustainable energy development. This paper evaluates 24 energy consumption models for 83 houses in Oshawa, Canada. The energy consumption, social and demographic information of the occupants, and the physical properties of the houses were collected through smart metering, a phone survey, and an energy audit. A total of 63 variables were determined, and based on the variable importance, three groups with different numbers of variables were selected, i.e., 26, 12, and 6 for electricity consumption; and 26, 13, and 6 for gas consumption. A total of eight data-driven algorithms, namely Multiple Linear Regression (MLR), Stepwise Regression (SR), Support Vector Machine (SVM), Backpropagation Neural Network (BPNN), Radial Basis Function Neural Network (RBFN), Classification and Regression Tree (CART), Chi-Square Automatic Interaction Detector (CHAID), and Exhaustive CHAID (ECHAID), were used to develop energy prediction models. The results show that the BPNN model has the best accuracies in predicting both the annual electricity consumption and gas consumption, with mean absolute percentage errors (MAPEs) of 0.94% and 0.94% for training and validation data for electricity consumption, and 2.63% and 0.16% for gas consumption, respectively.

Details

Title
Data-Driven Based Prediction of the Energy Consumption of Residential Buildings in Oshawa
Author
Lin, Yaolin 1   VIAFID ORCID Logo  ; Liu, Jingye 1 ; Kamiel Gabriel 2 ; Yang, Wei 3   VIAFID ORCID Logo  ; Chun-Qing, Li 4 

 School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China 
 Faculty of Engineering and Applied Science, Ontario Tech University, Oshawa, ON L1G 0C5, Canada 
 Faculty of Architecture, Building and Planning, The University of Melbourne, Melbourne 3010, Australia 
 School of Engineering, RMIT University, Melbourne 3000, Australia 
First page
2039
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20755309
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2748274551
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.