It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
A two-tier Kriging interpolation approach is proposed to model jump tables for resistive switches. Originally developed for mining and geostatistics, its locality of the calculation makes this approach particularly powerful for modeling electronic devices with complex behavior landscape and switching noise, like RRAM. In this paper, a first Kriging model is used to model and predict the mean in the signal, followed up by a second Kriging step used to model the standard deviation of the switching noise. We use 36 synthetic datasets covering a broad range of different mean and standard deviation Gaussian distributions to test the validity of our approach. We also show the applicability to experimental data obtained from TiOx devices and compare the predicted vs. the experimental test distributions using Kolmogorov–Smirnov and maximum mean discrepancy tests. Our results show that the proposed Kriging approach can predict both the mean and standard deviation in the switching more accurately than typical binning model. Kriging-based jump tables can be used to realistically model the behavior of RRAM and other non-volatile analog device populations and the impact of the weight dispersion in neural network simulations.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 The George Washington University, Department of Electrical and Computer Engineering, Washington, USA (GRID:grid.253615.6) (ISNI:0000 0004 1936 9510)
2 National Institute of Standards and Technology, Gaithersburg, USA (GRID:grid.94225.38) (ISNI:000000012158463X)
3 The George Washington University, Department of Statistics, Washington, USA (GRID:grid.253615.6) (ISNI:0000 0004 1936 9510)