Full text

Turn on search term navigation

Copyright © 2020 Li Cao et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/

Abstract

Data fusion can reduce the data communication time between sensor nodes, reduce energy consumption, and prolong the lifetime of the network, making it an important research focus in the field of heterogeneous wireless sensor networks (HWSNs). Normal sensor nodes are susceptible to external environmental interferences, which affect the measurement results. In addition, raw data contain redundant information. The transmission of redundant information consumes excess energy, thereby reducing the lifetime of the network. We propose a data fusion method based on an extreme learning machine optimized by particle swarm optimization for HWSNs. The spatiotemporal correlation between the data of the HWSNs is determined, and the extreme learning machine method is used to process the data collected by the sensor nodes in the hierarchical routing structure of the HWSN. The particle swarm optimization algorithm is used to optimize the input weight matrix and the hidden layer bias of the extreme learning machine. An output weight matrix is created to reduce the number of hidden layer nodes and improve the generalization ability of the model. The data fusion model fuses the original data collected by the sensor nodes. The simulation results show that the proposed algorithm reduces network energy consumption and improves the lifetime of the network, the efficiency of data fusion, and the reliability of data transmission compared with other data fusion methods.

Details

Title
Data Fusion Algorithm for Heterogeneous Wireless Sensor Networks Based on Extreme Learning Machine Optimized by Particle Swarm Optimization
Author
Cao, Li 1 ; Cai, Yong 1   VIAFID ORCID Logo  ; Yinggao Yue 2   VIAFID ORCID Logo 

 School of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, China 
 Computer School, Hubei University of Arts and Science, Xiangyang 441053, China 
Editor
Mohammad Haider
Publication year
2020
Publication date
2020
Publisher
John Wiley & Sons, Inc.
ISSN
1687725X
e-ISSN
16877268
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2436346538
Copyright
Copyright © 2020 Li Cao et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/