Full Text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Due to the advance of indoor positioning technology, it is now possible to trace mobile medical equipment (such as electrocardiography machines, patient monitors, and so on) being moved around a hospital ward. With the support of an object tracking system, nurses can easily locate and find a device, especially when they prepare for a shift change or a medical treatment. As nurses usually face high workloads, it is highly desirable to provide nurses with a user-friendly search interface integrated into a popular mobile app that they use daily. For this, DBOS, a dialog-based object query system, is proposed, which simulates a real conversation with users via the Line messaging app’s chatbot interface. A hybrid method that combines cosine similarity (CS) and term frequency–inverse document frequency (TF-IDF) is used to determine user intent. The result is returned to the user through Line’s interface. To evaluate the applicability of DBOS, 70 search queries given by a head nurse were tested. DBOS was compared with CS, TF-IDF, and Facebook Wit.ai respectively. The experiment results show that DBOS outperforms the abovementioned methods and can achieve a 92.8% accuracy in identifying user intent.

Details

Title
DBOS: A Dialog-Based Object Query System for Hospital Nurses
First page
6639
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2463520241
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.