Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Traditional camera sensors rely on human eyes for observation. However, human eyes are prone to fatigue when observing objects of different sizes for a long time in complex scenes, and human cognition is limited, which often leads to judgment errors and greatly reduces efficiency. Object recognition technology is an important technology used to judge the object’s category on a camera sensor. In order to solve this problem, a small-size object detection algorithm for special scenarios was proposed in this paper. The advantage of this algorithm is that it not only has higher precision for small-size object detection but also can ensure that the detection accuracy for each size is not lower than that of the existing algorithm. There are three main innovations in this paper, as follows: (1) A new downsampling method which could better preserve the context feature information is proposed. (2) The feature fusion network is improved to effectively combine shallow information and deep information. (3) A new network structure is proposed to effectively improve the detection accuracy of the model. From the point of view of detection accuracy, it is better than YOLOX, YOLOR, YOLOv3, scaled YOLOv5, YOLOv7-Tiny, and YOLOv8. Three authoritative public datasets are used in these experiments: (a) In the Visdron dataset (small-size objects), the map, precision, and recall ratios of DC-YOLOv8 are 2.5%, 1.9%, and 2.1% higher than those of YOLOv8s, respectively. (b) On the Tinyperson dataset (minimal-size objects), the map, precision, and recall ratios of DC-YOLOv8 are 1%, 0.2%, and 1.2% higher than those of YOLOv8s, respectively. (c) On the PASCAL VOC2007 dataset (normal-size objects), the map, precision, and recall ratios of DC-YOLOv8 are 0.5%, 0.3%, and 0.4% higher than those of YOLOv8s, respectively.

Details

Title
DC-YOLOv8: Small-Size Object Detection Algorithm Based on Camera Sensor
Author
Haitong Lou 1 ; Duan, Xuehu 1 ; Guo, Junmei 1 ; Liu, Haiying 1 ; Gu, Jason 2 ; Bi, Lingyun 1 ; Chen, Haonan 1 

 The School of Information and Automation Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250300, China[email protected] (X.D.); [email protected] (J.G.); 
 The School of Electrical and Computer Engineering, Dalhousie University, Halifax, NS B3J 1Z1, Canada 
First page
2323
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2819443984
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.