Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The world has seen an increase in the number of wildland fires in recent years due to various factors. Experts warn that the number of wildland fires will continue to increase in the coming years, mainly because of climate change. Numerous safety mechanisms such as remote fire detection systems based on deep learning models and vision transformers have been developed recently, showing promising solutions for these tasks. To the best of our knowledge, there are a limited number of published studies in the literature, which address the implementation of deep learning models for wildland fire classification, detection, and segmentation tasks. As such, in this paper, we present an up-to-date and comprehensive review and analysis of these vision methods and their performances. First, previous works related to wildland fire classification, detection, and segmentation based on deep learning including vision transformers are reviewed. Then, the most popular and public datasets used for these tasks are presented. Finally, this review discusses the challenges present in existing works. Our analysis shows how deep learning approaches outperform traditional machine learning methods and can significantly improve the performance in detecting, segmenting, and classifying wildfires. In addition, we present the main research gaps and future directions for researchers to develop more accurate models in these fields.

Details

Title
Deep Learning Approaches for Wildland Fires Remote Sensing: Classification, Detection, and Segmentation
Author
Ghali, Rafik  VIAFID ORCID Logo  ; Akhloufi, Moulay A  VIAFID ORCID Logo 
First page
1821
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2799747908
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.