Abstract

This paper introduces a sophisticated dermoscopic image classification system (DICS) leveraging deep learning techniques for accurate skin lesion classification. The DICS comprises four distinct modules: i) Skin Lesion Segmentation (SLS), ii) Feature Extraction (FE), iii) Feature Selection (FS), and iv) Image Classification (IC). The SLS module preprocesses the input dermoscopic image and employs a color k-means clustering approach for segmentation. Subsequently, in the FE module, three types of features are extracted, including 4th order Color Moments (CM), a statistical model based on Generalized Autoregressive Conditional Heteroscedasticity (GARCH), and texture features derived from Local Binary Patterns (LBP). The predominant features are then selected in the FS module using a statistical t-test. Finally, the IC module classifies dermoscopic images as normal or melanoma using a deep learning approach. The DICS demonstrates promising results, achieving 99% and 100% accuracy in normal/abnormal and benign/malignant classifications, respectively, when tested on the PH2database. This robust classification system has the potential to contribute significantly to the field of dermatological image analysis.

Details

Title
Deep Learning-Based Dermoscopic Image Classification System for Robust Skin Lesion Analysis
Author
Rajamanickam Thamizhamuthu  VIAFID ORCID Logo  ; Subramanian Pitchiah Maniraj  VIAFID ORCID Logo 
Pages
1145-1152
Publication year
2023
Publication date
Jun 2023
Publisher
International Information and Engineering Technology Association (IIETA)
ISSN
07650019
e-ISSN
19585608
Source type
Scholarly Journal
Language of publication
English; French
ProQuest document ID
2831412266
Copyright
© 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.