Full Text

Turn on search term navigation

Copyright © 2016 Qi Yue and Caiwen Ma. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Classification is a hot topic in hyperspectral remote sensing community. In the last decades, numerous efforts have been concentrated on the classification problem. Most of the existing studies and research efforts are following the conventional pattern recognition paradigm, which is based on complex handcrafted features. However, it is rarely known which features are important for the problem. In this paper, a new classification skeleton based on deep machine learning is proposed for hyperspectral data. The proposed classification framework, which is composed of exponential momentum deep convolution neural network and support vector machine (SVM), can hierarchically construct high-level spectral-spatial features in an automated way. Experimental results and quantitative validation on widely used datasets showcase the potential of the developed approach for accurate hyperspectral data classification.

Details

Title
Deep Learning for Hyperspectral Data Classification through Exponential Momentum Deep Convolution Neural Networks
Author
Yue, Qi; Ma, Caiwen
Publication year
2016
Publication date
2016
Publisher
John Wiley & Sons, Inc.
ISSN
1687725X
e-ISSN
16877268
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1846088543
Copyright
Copyright © 2016 Qi Yue and Caiwen Ma. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.