It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Many education facilities have recently switched to online learning due to the COVID-19 pandemic. The nature of online learning makes it easier for dishonest behaviors, such as cheating or lying during lessons. We propose a new artificial intelligence - powered solution to help educators solve this rising problem for a fairer learning environment. We created a visual representation contrastive learning method with the MobileNetV2 network as the backbone to improve predictability from an unlabeled dataset which can be deployed on low power consumption devices. The experiment shows an accuracy of up to 59%, better than several previous research, proving the usability of this approach.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer