Abstract

Many education facilities have recently switched to online learning due to the COVID-19 pandemic. The nature of online learning makes it easier for dishonest behaviors, such as cheating or lying during lessons. We propose a new artificial intelligence - powered solution to help educators solve this rising problem for a fairer learning environment. We created a visual representation contrastive learning method with the MobileNetV2 network as the backbone to improve predictability from an unlabeled dataset which can be deployed on low power consumption devices. The experiment shows an accuracy of up to 59%, better than several previous research, proving the usability of this approach.

Details

Title
A Deep Learning Powered System to Lie Detection While Online Study
Author
Le Quang Thao; Duong, Duc Cuong; Nguyen, Nhan Nhi; Tam, Nguyen Duc
Pages
893-898
Publication year
2022
Publication date
Jun 2022
Publisher
International Information and Engineering Technology Association (IIETA)
ISSN
07650019
e-ISSN
19585608
Source type
Scholarly Journal
Language of publication
English; French
ProQuest document ID
2807020973
Copyright
© 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.