Content area
Full Text
Contents
- Abstract
- Traditional and NLP Approaches to Psycholexical Research
- Step 1: Subsetting the Universe of Descriptors
- Step 2: Data Collection From a Large and Representative Sample
- Step 3: Data Reduction Analyses
- The Present Studies
- Study 1
- Method
- Participants, Measures, and Procedure
- Analyses
- Transparency and Openness
- Results
- Discussion
- Study 2
- Method
- Model Selection
- Query Writing and Selection
- Analyses
- Results
- Discussion
- Study 3a
- Method
- Materials
- Results
- Study 3b
- Method
- Materials
- Results
- Study 3c
- Method
- Materials
- Results
- Discussion
- General Discussion
- Conclusion
Figures and Tables
Abstract
Recent advances in natural language processing (NLP) have produced general models that can perform complex tasks such as summarizing long passages and translating across languages. Here, we introduce a method to extract adjective similarities from language models as done with survey-based ratings in traditional psycholexical studies but using millions of times more text in a natural setting. The correlational structure produced through this method is highly similar to that of self- and other-ratings of 435 English terms reported by Saucier and Goldberg (1996a). The first three unrotated factors produced using NLP are congruent with those in survey data, with coefficients of 0.89, 0.79, and 0.79. This structure is robust to many modeling decisions: adjective set, including those with 1,710 (Goldberg, 1982) and 18,000 English terms (Allport & Odbert, 1936); the query used to extract correlations; and language model. Notably, Neuroticism and Openness are only weakly and inconsistently recovered. This is a new source of signal that is closer to the original (semantic) vision of the lexical hypothesis. The method can be applied where surveys cannot: in dozens of languages simultaneously, with tens of thousands of items, on historical text, and at extremely large scale for little cost. The code is made public to facilitate reproduction and fast iteration in new directions of research.
Understanding the comprehensive structure of psychological individual differences offers the potential to develop models that can describe, predict, and explain the ways that important life outcomes are (and are not) shaped by personality (Mõttus et al., 2020). Indeed, the utility of models of between-person differences...