Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

With the emergence of intelligent terminals, the Internet of Vehicles (IoV) has been drawing great attention by taking advantage of mobile communication technologies. However, high computation complexity, collaboration communication overhead and limited network bandwidths bring severe challenges to the provision of latency-sensitive IoV services. To overcome these problems, we design a cloud-edge cooperative content-delivery strategy in asymmetrical IoV environments to minimize network latency by providing optimal computing, caching and communication resource allocation. We abstract the joint allocation issue of heterogeneous resources as a queuing theory-based latency minimization objective. Next, a new deep reinforcement learning (DRL) scheme works in each network node to achieve optimal content caching and request routing on the basis of the perceptive request history and network state. Extensive simulations show that our proposed strategy has lower network latency compared with the current solutions in the cloud-edge collaboration system and converges fast under different scenarios.

Details

Title
Deep Reinforcement Learning-Based Resource Allocation for Content Distribution in IoT-Edge-Cloud Computing Environments
Author
Cui, Tongke 1 ; Yang, Ruopeng 1 ; Chao, Fang 2   VIAFID ORCID Logo  ; Yu, Shui 3 

 College of Information and Communication, National University of Defense Technology, Changsha 410073, China 
 Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China 
 School of Computer Science, University of Technology Sydney, Sydney, NSW 2007, Australia 
First page
217
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20738994
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2767291307
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.