Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

False Data Injection Attacks (FDIA) on ship Direct Current (DC) microgrids may result in the priority trip of a large load, a black-out, and serious accidents of ship collisions when maneuvering in the port. The key of the prevention of FDIA is the detection of and countermeasures to false data. In this paper, a defense strategy is developed to detect and mitigate against FDIA on ship DC microgrids. First, a DC bus voltage estimator is trained with an Artificial Neural Network (ANN) model. The error between the estimate value and the measure value is compared with a threshold generated from history data to detect the occurrence of FDIA. Combined with the correlation of artificial neural network inputs, bad data are identified and recovered. The method is tested under six cases with different network and physical disturbances in Matlab/Simulink. The results show that the method can identify and mitigate the FDIA effectively; the error of identifying FDIA by ANN is less than 0.5 V. Therefore, the deviation between the actual bus voltage and the reference voltage is less than 0.5 V.

Details

Title
Defense Strategy against False Data Injection Attacks in Ship DC Microgrids
Author
Zeng, Hong  VIAFID ORCID Logo  ; Zhao, Yuanhao  VIAFID ORCID Logo  ; Wang, Tianjian  VIAFID ORCID Logo  ; Zhang, Jundong
First page
1930
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20771312
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2756723179
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.