It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Degradation analysis of photovoltaic (PV) modules based on real operational data is essential to the future development of the PV industry. Weather conditions and system drifting often lead to large uncontrollable fluctuations in operational data, which present great challenges for calculating degradation rates of PV modules. In this paper, we propose a new numerical two-step approach to overcome these difficulties. In particular, we will show that our method is able to eliminate effects of seasonal patterns and systematic sensor drifting in evaluating degradation rates of PV modules. The method is applied to the six-year operational data of a solar PV system installed at CA United States. We demonstrate that our approach can greatly improve the degradation calculations, compared with other widely used methods.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 REC Solar PTE LTD, Singapore 637312