Full text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Osseointegration of metal prosthetic implants is a yet unresolved clinical need that depends on the interplay between the implant surface and bone cells. The lack of a relationship between bone cells and metal has traditionally been solved by coating the former with “organic” ceramics, such as hydroxyapatite. A novel approach is hereby presented, immobilizing covalently dendrimeric structures onto titanium implants. Amide-based amino terminal dendrons were synthetized and coupled to titanium surfaces in a versatile and controlled way. The dendritic moieties provide an excellent scaffold for the covalent immobilization of bioactive molecules, such as extracellular matrix (ECM) protein components or antibiotics. Herein, tripeptide arginine-glycine-aspartic acid (RGD) motifs were used to decorate the dendritic scaffolds and their influence on cell adhesion and proliferation processes was evaluated.

Details

Title
Dendritic Scaffold onto Titanium Implants. A Versatile Strategy Increasing Biocompatibility
Author
Molina, Noemi  VIAFID ORCID Logo  ; González, Ana; Monopoli, Donato; Mentado, Belinda; Becerra, José  VIAFID ORCID Logo  ; Santos-Ruiz, Leonor  VIAFID ORCID Logo  ; Vida, Yolanda  VIAFID ORCID Logo  ; Perez-Inestrosa, Ezequiel  VIAFID ORCID Logo 
First page
770
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2386101761
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.