Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In the current study, a high temperature thermal storage system with a hybrid of phase change material and graphite as the storage materials is designed and evaluated as to its applicability for use as a utility-scale Carnot battery. The design includes an externally heated liquid sodium tank, which is used as the heat transfer fluid. This is used to charge and discharge the storage system consisting of a graphite storage medium sandwiched by two phase change materials. Finally, electrical generation is by way of a supercritical carbon dioxide Brayton cycle operated at 700 °C. Detailed modelling of these designs was conducted by way of a previously validated numerical model to predict performance metrics. Using the aforementioned designs, a preliminary cost estimate was undertaken to better determine applicability. From these results, it was found that while the graphite system was the most effective at storing energy, it was also the highest cost due to the high cost of graphite. In total, 18 storage tanks containing nearly 17,400 tons of storage material were required to store the 1200 MWht required to run the sCO2 power block for 10 h. Under the study conditions, the cost of a PCM-based Carnot battery was estimated to be $476/kWhe, comparable to other storage technologies. Furthermore, it was found that if the cost of the graphite and/or steel could be reduced, the cost of the system could be reduced to $321/kWhe.

Details

Title
Design and Evaluation of a High Temperature Phase Change Material Carnot Battery
Author
Jacob, Rhys 1   VIAFID ORCID Logo  ; Liu, Ming 2 

 Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Structure and Function of Materials (IEK-2), D-52425 Jülich, Germany 
 Future Industries Institute, University of South Australia, Mawson Lakes Boulevard, Mawson Lakes, SA 5095, Australia 
First page
189
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2761182942
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.