Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Vertical flow assays (VFAs) or flow-through assays have emerged as an alternate type of paper-based assay due to their faster detection time, larger sample volume capacity, and significantly higher multiplexing capabilities. They have been successfully employed to detect several different targets (polysaccharides, protein, and nucleic acids), although in a limited number of samples (serum, whole blood, plasma) compared to the more commonly known lateral flow assays (LFAs). The operation of a VFA relies mainly on gravity, coupled with capillary action or external force to help the sample flow through layers of stacked pads. With recent developments in this field, multiple layers of pads and signal readers have been optimized for more user-friendly operation, and VFAs have achieved a lower limit of detection for various analytes than the gold-standard methods. Thus, compared to the more widely used LFA, the VFA demonstrates certain advantages and is becoming an increasingly popular platform for obtaining qualitative and quantitative results in low-resource settings. Considering the wide application of gold nanoparticles (GNPs) in VFAs, we will mostly discuss (1) the design of GNP-based VFA along with its associated advantages/disadvantages, (2) fabrication and optimization of GNP-based VFAs for applications, and (3) the future outlook of flow-based assays for point-of-care testing (POCT) diagnostics.

Details

Title
Design of Gold Nanoparticle Vertical Flow Assays for Point-of-Care Testing
Author
Lei, Rongwei; Wang, David; Arain, Hufsa; Mohan, Chandra
First page
1107
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20754418
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2670132506
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.