Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Orbitrap mass spectrometers have gained widespread popularity in ground-based environmental component analysis. However, their application in atmospheric exploration for space missions remains limited. Existing data acquisition solutions for Orbitrap instruments primarily rely on commercial systems and computer-based spectrum analysis. In this study, we developed a self-designed data acquisition solution specifically tailored for atmospheric molecule detection. The implementation involved directly integrating a spectrum analysis algorithm onto a field programmable gate array (FPGA), enabling miniaturization, real-time performance, and meeting the desired requirements. The system comprises signal conditioning circuits, analog-to-digital conversion (ADC) circuits, programmable logic circuits, and related software. These components facilitate real-time spectrum analysis and signal processing on hardware, enabling high-speed acquisition and analysis of signals generated by the Orbitrap. Experimental results demonstrate that the system can sample front-end analog signals at a rate of 25 MHz and differentiate signal spectra with an error margin of less than 7 kHz. This establishes the viability of the designed data acquisition system for atmospheric mass spectrometry analysis.

Details

Title
Design and Implementation of an Orbitrap Mass Spectrometer Data Acquisition System for Atmospheric Molecule Identification
Author
Wang, Wei 1 ; Li, Yongping 1 

 National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China; [email protected]; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Key Laboratory of Space Environment Exploration, Beijing 100190, China; Key Laboratory of Science and Technology on Environmental Space Situation Awareness, Chinese Academy of Sciences, Beijing 100190, China 
First page
2387
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2824010578
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.