Full Text

Turn on search term navigation

Copyright © 2021 Raza Hasan et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

This paper proposes 2 × unrolled high-speed architectures of the MISTY1 block cipher for wireless applications including sensor networks and image encryption. Design space exploration is carried out for 8-round MISTY1 utilizing dual-edge trigger (DET) and single-edge trigger (SET) pipelines to analyze the tradeoff w.r.t. speed/area. The design is primarily based on the optimized implementation of lookup tables (LUTs) for MISTY1 and its core transformation functions. The LUTs are designed by logically formulating S9/S7 s-boxes and FI and {FO + 32-bit XOR} functions with the fine placement of pipelines. Highly efficient and high-speed MISTY1 architectures are thus obtained and implemented on the field-programmable gate array (FPGA), Virtex-7, XC7VX690T. The high-speed/very high-speed MISTY1 architectures acquire throughput values of 25.2/43 Gbps covering an area of 1331/1509 CLB slices, respectively. The proposed MISTY1 architecture outperforms all previous MISTY1 implementations indicating high speed with low area achieving high efficiency value. The proposed architecture had higher efficiency values than the existing AES and Camellia architectures. This signifies the optimizations made for proposed high-speed MISTY1 architectures.

Details

Title
Design Space Exploration for High-Speed Implementation of the MISTY1 Block Cipher
Author
Raza Hasan 1 ; Khizar, Yasir 2   VIAFID ORCID Logo  ; Mahmood, Salman 3 ; Sheikh, Muhammad Kashif 3   VIAFID ORCID Logo 

 Department of Computing, Middle East College, Knowledge Oasis Muscat, Seeb, Oman 
 College of Information Science, Nanjing University of Aeronautics & Astronautics, Nanjing, China 
 Department of Information Technology, Malaysian University of Science & Technology, Petaling Jaya, Malaysia 
Editor
Zain Anwar Ali
Publication year
2021
Publication date
2021
Publisher
John Wiley & Sons, Inc.
ISSN
1024123X
e-ISSN
15635147
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2545426894
Copyright
Copyright © 2021 Raza Hasan et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/