Full Text

Turn on search term navigation

Copyright © 2016 Shafqat Ullah Khan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

A compressed sensing based array diagnosis technique has been presented. This technique starts from collecting the measurements of the far-field pattern. The system linking the difference between the field measured using the healthy reference array and the field radiated by the array under test is solved using a genetic algorithm (GA), parallel coordinate descent (PCD) algorithm, and then a hybridized GA with PCD algorithm. These algorithms are applied for fully and partially defective antenna arrays. The simulation results indicate that the proposed hybrid algorithm outperforms in terms of localization of element failure with a small number of measurements. In the proposed algorithm, the slow and early convergence of GA has been avoided by combining it with PCD algorithm. It has been shown that the hybrid GA-PCD algorithm provides an accurate diagnosis of fully and partially defective sensors as compared to GA or PCD alone. Different simulations have been provided to validate the performance of the designed algorithms in diversified scenarios.

Details

Title
Detection of Defective Sensors in Phased Array Using Compressed Sensing and Hybrid Genetic Algorithm
Author
Khan, Shafqat Ullah; Ijaz Mansoor Qureshi; Aqdas Naveed; Shoaib, Bilal; Basit, Abdul
Publication year
2016
Publication date
2016
Publisher
John Wiley & Sons, Inc.
ISSN
1687725X
e-ISSN
16877268
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1737448707
Copyright
Copyright © 2016 Shafqat Ullah Khan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.