It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Despite improvement in detection rates, the prevalence of mental health disorders such as anxiety and depression are on the rise especially since the outbreak of the COVID-19 pandemic. Symptoms of mental health disorders have been noted and observed on social media forums such Facebook. We explored machine learning models used to detect anxiety and depression through social media. Six bibliographic databases were searched for conducting the review following PRISMA-ScR protocol. We included 54 of 2219 retrieved studies. Users suffering from anxiety or depression were identified in the reviewed studies by screening their online presence and their sharing of diagnosis by patterns in their language and online activity. Majority of the studies (70%, 38/54) were conducted at the peak of the COVID-19 pandemic (2019–2020) ,The increase of mental health problems and the need for effective medical health care have led to an investigation of machine learning that can be applied in mental health problems. This paper presents a recent systematic review of machine learning approaches in predicting mental health problems. Furthermore, we will discuss the challenges, limitations, and future directions for the application of machine learning in the mental health field. We collect research articles and studies that are related to the machine learning approaches in predicting mental health problems by searching reliable databases. Moreover, we adhere to the PRISMA methodology in conducting this systematic review. We include a total of 30 research articles in this review after the screening and identification processes. Then, we categorize the collected research articles based on the mental health problems such as schizophrenia, bipolar disorder, anxiety and depression, posttraumatic stress disorder, and mental health problems among children. Discussing the findings, we reflect on the challenges and limitations faced by the researchers on machine learning in mental health problems. Additionally, we provide concrete recommendations on the potential future research and development of applying machine learning in the mental health field.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer