Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In order to exploit the advantages of CNN models in the detection of small floating targets on the sea surface, this paper proposes a new framework for encoding radar echo Doppler spectral sequences into images and explores two different ways of encoding time series: Gramian Angular Summation Field (GASF) and Gramian Angular Difference Field (GADF). To emphasize the importance of the location of texture information in the GAF-encoded map, this paper introduces the coordinate attention (CA) mechanism into the mobile inverted bottleneck convolution (MBConv) structure in EfficientNet and optimizes the model convergence by the adaptive AdamW optimization algorithm. Finally, the improved EfficientNet model is used to train and test on the constructed GADF and GASF datasets, respectively. The experimental results demonstrate the effectiveness of the proposed algorithm. The recognition accuracy of the improved EfficientNet model reaches 96.13% and 96.28% on the GADF and GASF datasets, respectively, which is 1.74% and 2.06% higher than that that of the pre-improved network model. The number of parameters of the improved EfficientNet model is 5.38 M, which is 0.09 M higher than that of the pre-improved network model. Compared with the classical image classification algorithm, the proposed algorithm achieves higher accuracy and maintains lighter computation.

Details

Title
Detection of Small Floating Target on Sea Surface Based on Gramian Angular Field and Improved EfficientNet
Author
Xi, Caiping 1 ; Liu, Renqiao 2 

 College of Automation, Jiangsu University of Science and Technology, Zhenjiang 212100, China 
 Ocean College, Jiangsu University of Science and Technology, Zhenjiang 212100, China 
First page
4364
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2711473511
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.