Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Crevasses are formed by glacier movement and the stresses within glacier ice. Knowledge of the crevasses’ distribution is critical for understanding the glacier and ice shelf stability. In this study, we propose an automated crevasse extraction framework based on Sentinel-1 SAR imagery and an improved U-Net network. The spatial distribution of crevasses on Antarctic ice shelves in 2020 was mapped with a spatial resolution of ~40 m, and the characteristics of crevasses on the Nickerson Ice Shelf, Jelbart Ice Shelf, Amery Ice Shelf, Thwaites Glacier, and Shackleton Ice Shelf were analyzed. The results indicated the extraction accuracy of our method was 84.2% and the F1 score was 72.5%. Compared with previous published studies, the identification of the crevasse areas had good visual consistency. However, in some scenes, the recall rate was relatively lower due to the quality of the SAR image, terrain surrounding the crevasses, and observation geometry. The crevasses on different ice shelves had different characteristics in terms of length, density, type, and spatial pattern, implying the different stress structures of ice shelves. The Thwaites Glacier and the Nickerson Ice Shelf in the West Antarctica Ice Sheet (WAIS) had shorter ice crevasses, whereas the lengths of ice crevasses on the Jelbart Ice Shelf and the Amery Ice Shelf in the East Antarctica Ice Sheet (EAIS) were relatively long. Nevertheless, there are more closely spaced crevasses on the ice shelf in WAIS compared to that in the EAIS. For the distribution of crevasse types, the Nickerson Ice Shelf and the Shackleton Ice Shelf had various forms of crevasses. There were mainly transverse crevasses developed on the Jelbart Ice Shelf and the Amery Ice Shelf. This study provides a helpful reference and guidance for automated crevasse extraction. The method proposed by this study manifests great application potential and the efficacy of producing a time-series crevasse data set with higher spatial resolution and larger coverage. In the future, more Sentinel-1 SAR imagery will be applied and the effect of temporal and spatial variations in crevasses on the stability of ice shelves will be investigated, which will contribute to project the ice shelf stability and explore the sea level rise implications of recent and future cryosphere changes.

Details

Title
Detection of Surface Crevasses over Antarctic Ice Shelves Using SAR Imagery and Deep Learning Method
Author
Zhao, Jingjing 1 ; Liang, Shuang 2 ; Li, Xinwu 2 ; Duan, Yiru 2 ; Liang, Lei 2 

 Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China; [email protected] (J.Z.); [email protected] (S.L.); [email protected] (Y.D.); [email protected] (L.L.); University of Chinese Academy of Sciences, Beijing 100049, China 
 Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China; [email protected] (J.Z.); [email protected] (S.L.); [email protected] (Y.D.); [email protected] (L.L.) 
First page
487
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2627826968
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.