Full text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Vegetation encroachment along electric power transmission lines is one of the major environmental challenges that can cause power interruption. Many technologies have been used to detect vegetation encroachment, such as light detection and ranging (LiDAR), synthetic aperture radar (SAR), and airborne photogrammetry. These methods are very effective in detecting vegetation encroachment. However, they are expensive with regard to the coverage area. Alternatively, satellite imagery can cover a wide area at a relatively lower cost. In this paper, we describe the statistical moments of the color spaces and the textural features of the satellite imagery to identify the most effective features that can increase the vegetation density classification accuracy of the support vector machine (SVM) algorithm. This method aims to distinguish between high- and low-density vegetation regions along the power line corridor right-of-way (ROW). The results of the study showed that the statistical moments of the color spaces contribute positively to the classification accuracy while some of the gray level co-occurrence matrix (GLCM) features contribute negatively to the classification accuracy. Therefore, a combination of the most effective features was used to achieve a recall accuracy of 98.272%.

Details

Title
Detection of Vegetation Encroachment in Power Transmission Line Corridor from Satellite Imagery Using Support Vector Machine: A Features Analysis Approach
Author
Fathi Mahdi Elsiddig Haroun 1 ; Siti Noratiqah Mohamed Deros 1 ; Mohd Zafri Bin Baharuddin 2 ; Norashidah Md Din 1 

 Institute of Energy Infrastructure, Universiti Tenaga Nasional, Kajang 43000, Malaysia; [email protected] (S.N.M.D.); [email protected] (N.M.D.) 
 College of Engineering, Universiti Tenaga Nasional, Kajang 43000, Malaysia; [email protected] 
First page
3393
Publication year
2021
Publication date
2021
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2544976732
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.