Full text

Turn on search term navigation

© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In brushless direct current (or BLDC) motors with more than one pole pair, the status of standard shaft position sensors assumes the same distribution several times for its full mechanical rotation. As a result, a simple analysis of the signals reflecting their state does not allow any determination of the mechanical position of the shaft of such a machine. This paper presents a new method for determining the mechanical position of a BLDC motor rotor with a number of pole pairs greater than one. In contrast to the methods used so far, it allows us to determine the mechanical position using only the standard position sensors in which most BLDC motors are equipped. The paper describes a method of determining the mechanical position of the rotor by analyzing the distribution of errors resulting from the accuracy proposed by the BLDC motor’s Hall sensor system. Imprecise indications of the rotor position, resulting from the limited accuracy of the production process, offer a possibility of an indirect determination of the rotor’s angular position of such a machine.

Details

Title
Determining the Position of the Brushless DC Motor Rotor
Author
Kolano, Krzysztof  VIAFID ORCID Logo 
First page
1607
Publication year
2020
Publication date
2020
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2386101271
Copyright
© 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.