Abstract

Cooling the junction of a scanning tunneling microscope to millikelvin temperatures is fundamental for high-resolution scanning tunneling spectroscopy. However, accurately determining the junction temperature has proven elusive, due to the microscopic dimension of the junction and its continuous energy exchange with the surrounding environment. Here, we employ a millikelvin scanning tunnelling microscope cooled by an adiabatic demagnetization refrigerator. Using normal-metal and superconducting tips, we perform scanning tunnelling spectroscopy on an atomically clean surface of Al(100) in a superconducting state. By varying the refrigerator temperatures between 30 mK and 1.2 K, we show that the temperature of the junction is decoupled from the temperature of the surrounding environment. To corroborate our findings, we simulate the scanning tunnelling spectroscopy data with P(E) theory and determine that the junction has a temperature of 77 mK, despite its environment being at 1.5 K.

Determining and controlling the junction temperature is one of the primary issues in millikelvin scanning tunneling microscopy. The authors show how to deduce this temperature from scanning tunneling spectroscopy experiments, demonstrating that their junction reaches 77 mK in spite of being exposed to a much hotter 1.5 K environment.

Details

Title
Determining the temperature of a millikelvin scanning tunnelling microscope junction
Author
Esat, Taner 1   VIAFID ORCID Logo  ; Yang, Xiaosheng 1   VIAFID ORCID Logo  ; Mustafayev, Farhad 1 ; Soltner, Helmut 2   VIAFID ORCID Logo  ; Tautz, F. Stefan 3   VIAFID ORCID Logo  ; Temirov, Ruslan 4   VIAFID ORCID Logo 

 Forschungszentrum Jülich, Peter Grünberg Institut (PGI-3), Jülich, Germany (GRID:grid.8385.6) (ISNI:0000 0001 2297 375X); Jülich Aachen Research Alliance (JARA), Fundamentals of Future Information Technology, Jülich, Germany (GRID:grid.494742.8) 
 Forschungszentrum Jülich, Zentralinstitut für Engineering, Elektronik und Analytik (ZEA-1), Jülich, Germany (GRID:grid.8385.6) (ISNI:0000 0001 2297 375X) 
 Forschungszentrum Jülich, Peter Grünberg Institut (PGI-3), Jülich, Germany (GRID:grid.8385.6) (ISNI:0000 0001 2297 375X); Jülich Aachen Research Alliance (JARA), Fundamentals of Future Information Technology, Jülich, Germany (GRID:grid.494742.8); RWTH Aachen University, Experimentalphysik IV A, Aachen, Germany (GRID:grid.1957.a) (ISNI:0000 0001 0728 696X) 
 Forschungszentrum Jülich, Peter Grünberg Institut (PGI-3), Jülich, Germany (GRID:grid.8385.6) (ISNI:0000 0001 2297 375X); University of Cologne, Institute of Physics II, Faculty of Mathematics and Natural Sciences, Cologne, Germany (GRID:grid.6190.e) (ISNI:0000 0000 8580 3777) 
Pages
81
Publication year
2023
Publication date
2023
Publisher
Nature Publishing Group
e-ISSN
23993650
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2804152625
Copyright
© The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.