Full text

Turn on search term navigation

© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This focused review presents various approaches or formats in which liquid crystals (LCs) have been used as stimuli-responsive sensors. In these sensors, the LC molecules adopt some well-defined arrangement based on the sensor composition and the chemistry of the system. The sensor usually consists of a molecule or functionality in the system that engages in some form of specific interaction with the analyte of interest. The presence of analyte brings about the specific interaction, which then triggers an orientational transition of the LC molecules, which is optically discernible via a polarized optical image that shows up as dark or bright, depending on the orientation of the LC molecules in the system (usually a homeotropic or planar arrangement). The various applications of LCs as biosensors for glucose, protein and peptide detection, biomarkers, drug molecules and metabolites are extensively reviewed. The review also presents applications of LC-based sensors in the detection of heavy metals, anionic species, gases, volatile organic compounds (VOCs), toxic substances and in pH monitoring. Additionally discussed are the various ways in which LCs have been used in the field of material science. Specific attention has been given to the sensing mechanism of each sensor and it is important to note that in all cases, LC-based sensing involves some form of orientational transition of the LC molecules in the presence of a given analyte. Finally, the review concludes by giving future perspectives on LC-based sensors.

Details

Title
Development and Application of Liquid Crystals as Stimuli-Responsive Sensors
Author
Oladepo, Sulayman A 1   VIAFID ORCID Logo 

 Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; [email protected]; Tel.: +966-13-860-7103; Fax: +966-13-860-4277; Interdisciplinary Research Center for Advanced Materials (IRC-AM), King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia 
First page
1453
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2633215764
Copyright
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.